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Given a complex network, itsL-paths correspond to sequences ofL+1 distinct nodes connected throughL
distinct edges. TheL–conditional expansion of a complex network can be obtained by connecting all its pairs
of nodes which are linked through at least oneL-path, and the respective conditionalL-expansion of the
original network is defined as the intersection between the original network and itsL-expansion. Such expan-
sions are verified to act as filters enhancing the network connectivity, consequently contributing to the identi-
fication of communities in small-world models. It is shown in this paper forL=2 and 3, in both analytical and
experimental fashions, that an evolving complex network with a fixed number of nodes undergoes successive
phase transitions—the so-calledL-percolations, giving rise to Eulerian giant clusters. It is also shown that the
critical values of such percolations are a function of the network size and that the network percolates forL
=3 beforeL=2.
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I. INTRODUCTION

One of the most remarkable properties of complex net-
works is their tendency to undergo a topological phase tran-
sition (i.e., percolation) as the number of connections is pro-
gressively increased[1–3]. Several systems, such as the
World Wide Web and epidemics dissemination, only become
particularly interesting near or after percolation. Although
some works have investigated phase transitions in dynamical
systems underlain by complex networks(e.g.,[4,5]), here we
focus our attention ontopologicalcritical phenomena in such
networks. In addition to the classical studies by Erdős and
Rényi, more recent works addressing percolation in networks
include the analysis of the stability of shortest paths in com-
plex networks[6], the investigation of percolation in auto-
catalytic networks[7], and the study of the fractal character-
ization of complex networks[8].

The concept of L-percolations is based on the
L-expansions andL–conditional expansions of a complex
network, which are introduced in the current paper. Consider
the two subsequent edges in Fig. 1(a). The fact that node 2 is
indirectly connected to node 3 through a self-avoiding 2-path
passing through node 1 defines avirtual link between nodes
2 and 3[9], represented by the dotted line in that figure. In
case such a virtual edge does belong to the network, it de-
fines a cycle of length 3 between the three involved nodes, as
illustrated in Fig. 1(b), which contains three distinct undi-
rected 2-paths. The “self-avoiding” requirement for the paths
is imposed in order to avoid passing twice through the same
edge, which would tend to produce an infinite number of
paths between any pair of connected edges. For instance, in
the case this restriction is not considered, there would be an
infinite number of even-length paths(i.e.,L=3, 5, 7,…) from
node 1 to 2 in Fig. 1(a), while just the direct 1-path between
those nodes remains after imposing the self-avoiding require-

ment. Such a restriction therefore allows a clearer character-
ization of the distribution of path lengths and connectivity in
a complex network.

The specific demands governing the network growth may
imply that cycles such as that in Fig. 1(b) occur sooner or
later along the network evolution. For instance, intense indi-
rect (i.e., through node 1) information exchange between
nodes 2 and 3 is likely to foster the appearance of a direct
link between those two nodes[9]. In other words, the forma-
tion of such cycles can be understood as areinforcement of
the connectivity between the involved nodes, possibly im-
plied by intensive information interchange and/or node affin-
ity. Therefore, the density of 3-cycles(as well as cycles simi-
larly defined for other values ofL) is likely to provide
interesting insights into the growth dynamics and connectiv-
ity properties of complex networks. This is one of the main
motivations for the investigations reported in the present ar-
ticle, with implications to the identification of communities
in the analyzed networks, as described below. Another im-
portant aspect intrinsic to the definition ofL-paths is that
such a property is directly related to thetransitivity of con-
nections along the network. In other words, if nodei1 is
connected to nodei2, which is connected to nodei3, and so
on, until iL, the eventual presence of the therefore established
virtual link extending fromi1 to iL can be understood as an
indication of transitivity in the network connectivity.

It is worth observing that a 3-cycle can also be related to
a hyperedgebetween the three involved nodes, as illustrated
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FIG. 1. A pair of subsequent edges defining avirtual link be-
tween nodes 2 and 3(a), the basic cycle of size 3 underlying
2-percolations(b), and its relationship with the concept ofhyper-
edge(c).
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in Fig. 1(c). Such a kind of edge is characteristic ofhyper-
graphs[10–12], whose nodes are connected through hyper-
edges. In other words, a hyperedge is a relationship defined
at the same time between more than two nodes. The essential
difference between the 3-cycle shown in Fig. 1(b) and the
hyperedge in(c) is the fact that the 3-cycle can be dismantled
by removing any of the involved edges while the hyperedge
implies simultaneous deletion of all connections(i.e., a hy-
peredge is a single edge and can only be removed as a
whole). In other words, a 3-hyperedge intrinsically implies a
3-cycle, but not the other way around. Still, situations where
the sL+1d-cycles are closely interdependent can be under-
stood in terms of hyperedges.

Given a complex networkG with N nodes, its
L-expansion is henceforth defined as the new network, also
with N nodes, which is obtained by incorporating an edge
between two nodesi and j whenever there exists a virtual
link of length L (i.e., a self-avoiding path of lengthL) be-
tween those two nodes. Observe that such a definition holds
for both directed and undirected graphs. Such expansions can
be implemented by considering or not multiple links between
two nodes, leading to different results. TheL-expansion of a
network can be intersected by the original networkG in order
to obtain theL–conditional expansion of that network. Such
a network, which also involvesN nodes, contains all cycles
of lengthL+1 in the original network and no node with null
or unit degree. Actually, all connections in such a network
belong to cycles of lengthL+1. In the caseL=2, the respec-
tive L–conditional expansion is composed exclusively of
3-cycles and can therefore be related to a respective
3-hypergraph contained in the original network. Figure 2 il-
lustrates a simple undirected graph(a) and its respective 2-
(b) and 3-(c) expansions. The 2– and 3–conditional expan-
sions of the graph in Fig. 2(a) are shown in(d) and (e).

Figure 3 shows a simple network(a) and its respective
2-conditional expansion, which involves only 3-cycles. Ob-
serve that the conditional percolation removes all the edges
not involved in 3-cycles, so that the obtained clusters repre-
sent a strong backbone of the original network. Observe that
any single edge can be removed from the conditionally ex-
panded network without producing a new cluster, which is
true for anyLù2. At the same time, the conditional expan-
sion tends to enhance the clustering coefficient[1] of the
obtained network. For the specific caseL=2, the conditional
expansion also tends to enhance theregularity1 of the net-
work, in the sense that all nodes in the resulting network
have degree equal to an integer multiple of 2.

Conditional expansions can be thought of as a kind of
network filter which removes edges in order to preserve
those groups of nodes more densely connected through
L-paths, therefore characterizing a tendency of the condi-
tional expansion to preserve the subgraphs contained in
small-world models[1,13]. This fact makes the conditional
expansions an interesting mechanism for identifying commu-
nities in such a kind of complex networks, a possibility
which is preliminarly investigated in the current work(see
Sec. III). Observe that the hubs—i.e., nodes with a high

degree—are not necessarily preserved by conditional expan-
sions. For instance, although the hub marked asa in Fig. 3
was retained, the one marked asb was eliminated by the
3–conditional expansion.

The progressive addition of new edges into a random net-
work inevitably leads to the appearance of agiant cluster,
which dominates the network henceforth. Such a phenom-
enon, corresponding to a topological phase transition(i.e.,
percolation) [14] of the network, has motivated much inter-
est and bridged the gap between graph theory and statistical
mechanics. As shown in this article in both analytical and
experimental fashions, the uniform evolution of a random
network (and also of a preferential-attachment model) natu-
rally leads not only to the traditional percolation, but also to
successiveL-percolations, which are characterized by the
fact that a giant cluster appears in the respective
L–conditional expansions. For instance, as the number of
edges is progressively increased, one reaches a point where a
giant cluster is established in the original network where
each of its nodes is connected to at least another node not
only through a direct connection, but also through a self-
avoiding path of lengthL. This is themain propertycharac-
terizing the giant clusters for genericL-percolations. For in-
stance, in the caseL=2, the giant cluster is characterized by
the fact that each of its edges is part of a 3-cycle. In other
words, every edge of the giant cluster can be associated with
a 3-hyperedge, thus emphasizing the fact that the connec-1A network is regular iff all its nodes have the same degree.

FIG. 2. A simple graph(a) and its respective 2-(b) and 3-(c)
expansions. The respective 2– and 3–conditional expansions are
shown in(d) and (e). The completeness ratios aref2=0.43 andf3

=0.86.
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tions of such a 2–giant cluster are stronger than the tradi-
tional case(i.e., L=1). The hypergraph in Fig. 3 provides a
simplified illustration of the connections characterizing the
giant cluster in a 2-percolated complex network. It should be
noticed that the giant cluster obtained in anL–conditional
expansion has the unique characteristic that it cannot be
modified by a subsequent conditional expansion for the same
valueL, a property calledidempotency.

The concept ofL-percolations allows a series of insights
about the analyzed networks, including the following.

Theoretical features:As one of the main interests in
complex networks is related to the occurrence of critical
topological transitions, the identification of further percola-
tions of a growing network represents an important fact by
itself, indicating that the abrupt changes of the network
properties—namely, connectivity—is not restricted to
1-connectivity, but extends over several values ofL. There-
fore, the dynamics of network connectivity formation is veri-
fied to be richer than usually considered in complex network
theory.

Identification of the strongest connections:The occur-
rence of anL-percolation indicates a reinforcement between
most of the connections in a network as far asL-paths are
concerned. In other words, the fact that a giant cluster is
obtained for a specific value ofL indicates that most of the
network nodes are connected through closedL-paths (i.e.,
most belong to cycles), therefore exhibiting enhanced con-
nectivity for that value, in the sense that several links may be
removed before the percolated cluster collapses.

Network characterization: Several measurements related
to the concept ofL-connectivity can be defined and used to
characterize the connectivity properties of complex networks

(such as transitivity), as illustrated in the last section of this
article. Taken in combination with traditional features such
as the average node degree[1–3], such measurements allow
a more complete characterization of the connectivity features
of the network under analysis.

Community finding: The clusters obtained by the
L–conditional expansions are characterized by enhanced
average clustering coefficient while presenting a tendency to
remove links between loosely connected groups of nodes,
suggesting the division of the original network into meaning-
ful communities (e.g., [15,16]). In other words, the
L–conditional expansions of a network may help the identi-
fication of the involved communities, as only the more in-
tensely connected nodes(i.e., those characterized byL-paths)
will remain after the conditional expansion. This possibility
is preliminarly illustrated in Sec. III of this article.

Eulerian networks:In case the conditional expansions are
performed allowing for multiple links between two nodes, it
is shown in this paper that the giant clusters underlying the
L-percolations, and therefore contained in the original net-
work, are necessarily Eulerian.2 In other words, all nodes of
the giant cluster defined by anL-percolation can be visited
without passing twice over the same edge. Such a property
has interesting implications for several types of complex net-
works, including communication networks and protein se-
quence networks(e.g., [17]), as well as for random walk
investigations[18].

II. DEFINITIONS

Let the nodes of the network of interestG be represented
ask=1, . . . ,N and the edges as ordered pairssi , jd. The total
number of edges in the network is expressed asnsGd. For
generality’s sake, the networkG can be fully represented by
its weight matrixW, where no self-connections are allowed.
The weight matrix is obtained by assigning the weight of
each edgesi , jd to the respective weight matrix element
ws j , id. Such a representation of the network in terms of a
weight matrix is more general than the traditional adjacency
matrix, as it allows the representation of the weights associ-
ated with the network edges. To any extent, the adjacency
matrix A of a graph can be obtained by making its elements
as j , id=1 whenever there is an edge(of any nonzero weight)
between nodesi and j . The average node degree ofG is
henceforth represented asz. Let dTsxd be the operator acting
elementwise over the matrixx in such a way that the value of
1 is assigned whenever the respective element ofx has ab-
solute value larger than or equal to the specified threshold
T—for instance,d2(xW =s3,−2,0,−4,1d)=s1,1,0,1,0d. Thus,
the adjacency matrix can be obtained from the weight matrix
asA=dTsWd.

The random and preferential-attachment models were ob-
tained as described in the following. For the random network
case, the growing parameter corresponds to the Poisson rate

2A connected graph isEulerian if it contains a closed trail includ-
ing all edges—i.e., aEulerian trail. A trail is a sequence of distinct
edges connecting not necessarily distinct nodes.

FIG. 3. A simple network(a) and its 2–conditional expansion
represented in terms of cycles/hyperedges.
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(the mean density of connections) p and, in the preferential-
attachment case, to the numberc of existing connections in
the current stage of growth, which are normalized in terms of
the respective average node degree aszR=psN−1d and zSF

=2c/N, respectively, for the sake of direct comparison be-
tween the two network types. The preferential-attachment
network growth was performed by keeping a list where each
network node with current degreek appearsk times, so that
subsequent edges can be defined by selecting pairs of distinct
elements in such a list according to the uniform distri-
bution [19].

One can check for anL-path between two nodesi and j by
checking the sequences of successors for each transition
along the graph, until either a path is found or all the paths
have been tested(the so-calleddepth-firstscanning of the
graph from nodei). Only successor nodes not already in-
cluded in the constructing path are considered during this
procedure. Observe that, in the particular case ofL=2, the
respective paths can be immediately obtained from the
squared adjacency matrix ignoring its main diagonal.

The L-expansions andL–conditional expansions are
henceforth represented asYL and JL, respectively. Interest-
ing information about the intrinsic topology of the original
network G can be obtained from their measurements of the
respective expansions. Some simple possibilities are the
number of edges in each of these graphs, henceforth ex-
pressed asnsYLd and nsJLd. Thus, fL=nsJLd /nsGd—hence
the completeness ratioof the networkG for L—corresponds
to the ratio between the number of edges belonging tosL
+1d-cycles and the total number of edges in the original net-
work G. For instance, in the case all edges inG are part of a
3-cycle, we havef2=1, while smaller values are obtained for
less transitive networks.

An interesting property of the giant clusters defined by the
L-percolations when multiple links are allowed is the fact
that they are necessarily Eulerian. More specifically, such
multiple edges are implemented as follows: given the
2–conditional expansion of the original network, duplicate
each edge which is shared by two cycles, as illustrated in
Fig. 4. This interesting property can be easily proved by
considering that all nodes in such a network will have even
degree, which is a necessary and sufficient condition for the
cluster to be Eulerian[12].

III. CONDITIONAL EXPANSIONS AND COMMUNITY
FINDING

This section reports a preliminary investigatation of the
potential ofL–conditional expansions as a subsidy for com-
munity finding. We already observed in Sec. I of this article
that such expansions tend to preserve the more strongly con-
nected subnetworks or communities. Figure 5(a) shows an
initial network containing 3 communities of 20 nodes, each
corresponding to a random network whose edges were added
according to uniform probability with Poisson rate 0.3. By
adding random edges between these 3 groups, small-world
networks such as that shown in Fig. 5(b) can be obtained.
The potential of theL–conditional expansions for isolating
the original communities is illustrated in Fig. 5(c), which

shows the network obtained by performing the 2–conditional
expansion over the network in Fig. 5(b). Although missing
some of the original connections, the three clusters obtained
by the conditional expansion correspond to the original com-
munities. The connections inside each obtained community
can be partially complemented by incorporating those edges
in Fig. 5(b) which connect nodes inside each of the identified
clusters. This type of link is henceforth called anintracom-
munityedge, while links between nodes in different commu-
nities are calledintercommunityedges. The effect of this
procedure is illustrated in Fig. 6 with respect to the three
communities identified in Fig. 5(c). Although a total of 19
edges were recovered, the disconnected node at the upper left
corner of the network remained isolated from its original
community.

We have verified through experimental simulations that,
for a relatively small number of added edges(Poisson rate
about 0.015 for networks such as that in Fig. 5, the original
communities can be reasonably estimated by applying the
2–conditional expansion. Situations where some intercom-
munity edges are left by such expansions can be addressed
by using the Newman-Girvan method after the respective
2–conditional expansion. However, situations involving a
substantial number of random intercommunity edges, as
when the intercommunity and intracommunity edges are es-
tablished with similar probabilities, are likely to produce in-
correct communities.

IV. L-PERCOLATIONS

The L-percolations of random networks have been inves-
tigated from both the analytical and experimental points of
view, as described in the following. Preferential-attachment
networks were also considered, but only experimentally.

A. Analytic mean-field calculations

The following mean-field approximation assumes that the
edge assignment takes place independently of the node de-

FIG. 4. A simple network obtained after 2–conditional expan-
sion (a) and the duplication of its shared edges in order to warrant
the Eulerian property(b).
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gree or other network features, being more accurate for not
extremely dense networks(see below). Let G be a random
network withN nodes and Poisson ratep (defining the over-
all edge density), implying the maximum number of edges to
be nT=NsN−1d /2. It immediately follows that the average

number of expected edges isn=pnT and that the average
node degree therefore isz=2n/N=psN−1d. We adopt a
mean-field approach considering each nodei. As the ex-
pected number of nodes connected toi is z, we have that the
maximum number of 2-paths involving the edgessk, id; si ,pd
established between any two nodesk and p connected to
node i is zsz−1d /2, so that the expected number of direct
connections between them ispzsz−1d /2 and the expected
total number of 2-paths isn2=Npzsz−1d /2, implying the re-
spective 2–conditional expansion of the original graph to
have Poisson ratep2 as given by Eq.(1). Now, since the
2–conditional expansion ofG is also a random network(re-
call that the edge assignment takes place independently of
node degree or other current network property), we obtain
the critical pointp2

c where the respective percolation takes
place by considering that the node degree of the
2–conditional expansion—namely,z2

cs2−ced—reaches unit
value at that critical transition[see Eq.(2)]. Interestingly, this
critical point is verified to grow as a power ofN. The respec-
tive average degree of the original network at this critical
point can be estimated as in Eq.(3).

Next we address the caseL=3 by considering each edgee
connecting two nodesi and j of average degreez. The total
of direct connections between the distinct nodesk and p
connected respectively toi and j , defining 3-pathssk, id;
si , jd; s j ,pd between nodesk andp, therefore is given asz2,

FIG. 5. Illustration of how the
conditional expansion of a net-
work can act as a filter enhancing
the communities in small-world
types of networks:(a) original
network containing three commu-
nities,(b) network obtained by ad-
dition of random connections be-
tween communities, and (c)
partial identification of the three
original communities obtained by
2–conditional expansion of the
network in (b).

FIG. 6. Complemented communities obtained by incorporating
edges from the network in Fig. 5(b) into the three respective clus-
ters in Fig. 5(c).
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and the expected number of such directed links per edge
therefore isspzd2. The total number of direct links between
the pairs of nodes connected through 3-paths passing through
edgee therefore isn3=nTspzd2=Np4sN−1d3/2, implying re-
spective Poisson rates as in Eq.(4). Observe that, in the case
the connections become too dense, the number of closed
paths such assk, id; si , jd; s j ,kd, instead of the assumed open
pathssk, id; si , jd; s j ,pd, may become too frequent and under-
mine the above estimations forL=3. As the 3–conditional
expansion of the original random network is also assumed to
be a random network, the associated critical rate value can
now be calculated as in Eq.(5). The corresponding average
degree of the original network at this critical point is given
by Eq.(6). Interestingly, it follows thatp3

c,p2
c for anyN.1,

i.e., the 3–conditional expansion is expected to percolate
sooner than the 2–conditional expansion. We also have that
f2=p2sN−1d, f3=p3sN−1d2, and f3/ f2=p3/p2=z:

p2 =
n2

nT
= p3sN − 1d, s1d

z2
cs2 − ced = 2

n2

N
= 1 ⇒ p2

c = sN − 1d−2/3, s2d

z2
csorigd = p2

csN − 1d = sN − 1d1/3, s3d

p3 =
n3

nT
= p4sN − 1d2, s4d

z3
cs3 − ced = 2

n3

N
= 1 ⇒ p3

c = sN − 1d−3/4, s5d

z3
csorigd = p3

csN − 1d = sN − 1d1/4. s6d

B. Simulation results

The experimental analysis was performed by monitoring
the normalized maximum cluster sizeMszd for each instance
of the growing networks for a total of 300 realizations of
each configuration. Figure 7 shows the maximum cluster
sizes obtained for random and preferential-attachment net-
works for N=b2, where b=3,4, . . . ,15. Thepreferential-
attachment cases were generally characterized by smoother
transitions than their random counterparts. As expected, the
2– and 3–conditional expansions percolated later than the
original networksL=1d, with the 3–conditional expansions
of the original network percolating sooner and more abruptly
than the respective 2–conditional expansions. Larger disper-
sions were observed for the maximum cluster sizes of the
random networks, indicating that their specific realizations
are less uniform. As theoretically predicted, the critical aver-
age node degreezc resulted in a function of network sizeN in
both the random and preferential-attachment models, but
such a dependency was markedly less intense for the
preferential-attachment model. The dilogarithm diagram in
Fig. 8 shows the theoretical predictions(solid and dashed
lines) and the values corresponding to 80% of the critical
average node degrees. More specifically, the vertical axis
represents the logarithm of the critical average node degree
corresponding to 80% of the value ofz for which the maxi-
mum dispersion ofMszd (the vertical bars in Fig. 7) is ob-
served in the respective simulation. Observe that a total of 13
simulation sets(executed for 200 realizations considering
each specific values ofN, as identified in thex axis of Fig.
8), and not only the three cases illustrated in the first row of
Fig. 7, were considered in order to obtain the results shown
in Fig. 8. A good agreement between analytic and experi-
mental results is verified for bothL=2 and 3.

The completeness ratios for the random and preferential-
attachment have also been estimated in our simulations, and

FIG. 7. The giant cluster sizes for the random and preferential-attachment networks and respective conditional expansions in terms ofz
for N=25, 100, and 225 andL=1 sLd, L=2 s+d, andL=3 s3d.
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the results forN=25, 100, and 225 are shown in Fig. 9. It is
clear from this figure that, as expected, higher completeness
ratios were always obtained for the 3–conditional expansions
than for the 2–conditional expansions, substantiating the fact
that 3–conditional expansions tend to produce networks with
more edges than those obtained for 2–conditional expan-
sions. At the same time, the preferential-attachment models
were characterized by completeness ratios which grow faster
with z than for the random model, indicating that this type of
complex network tends to produce a higher number of edges
belonging to 3- and 4-cycles. Such a result is compatible
with the fact that random networks tend to percolate faster
than the preferential-attachment model because the com-
pleteness ratio only takes into account the number of existing
edges in the original network. For instance, a network con-
taining 10 isolated 3-cycles will havef2=1 while a network
with a single cycle containing 30 nodes will implyf2=0.
Therefore, while the size of the dominant cluster tends to
grow slower in preferential-attachment networks, the clusters
in such cases have a higher number of edges belonging to 3-

or 4-cycles than those in random networks, as expressed in
Fig. 9.

V. APPLICATION TO REAL DATA

In order to illustrate the potential of the concepts and
measurements suggested above, they have been applied to
experimental data regarding concept associations obtained in
the psychophysical experiment described in[9], where a hu-
man subject is requested to associate words. After 1930 word
associations were obtained, a weighted directed graphb was
determined by representing each of the 250 words as nodes
and the number of specific associations between two words
as the weight of the edge between the respective nodes. The
respective average node seemed to follow a power law. Here
we consider the adjacency matrixA=dT=1sB+B8d, whereB
=dT=1sWd, B8 is the transpose ofB, and W is the weight
matrix obtained in the concept association experiment. In
other words, the original weight matrix is thresholded atT
=1 and made symmetric in order to transform the original
digraph into a graph. MatrixB was characterized byn=738
edges,p=0.011, andz=5.9. The 2– and 3–conditional ex-
pansions ofA were obtained as described above, leading to
n2=407 and n3=606 connections,p2=0.0067 and p3
=0.0092, with respective average node degrees of 4.5 and
5.7. Thus, we havef2=0.55 andf3=0.82, indicating, as ex-
pected, a higher density of 4- than 3-cycles in the original
network. Such high densities also imply that about half of the
edges in the original network belong to 3-cycles, while over
80% of the edges belong to 4-cycles. As a matter of fact, the
fact that these values exceed the respective critical valueszc
for N=250 (see Fig. 8) strongly suggests that the word asso-
ciation network has already undergone percolation as well as
2- and 3-percolations. Such results indicate that the word

FIG. 8. Dilogarithm presentation of analytical predictions(solid
line, L=4; dashed line,L=3) and experimental values(3, L=2; *,
L=3) of critical average node degrees in terms ofN.

FIG. 9. The completeness ratios for the random and preferential-attachment models in terms ofz for N=25, 100, and 225 andL
=2 s+d andL=3 s3d.
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association network is underlain by 3- and 4-cycles formed
as a consequence of transitive nature of word associations.

An interesting question implied by the above results re-
gards the quantification of the degree of transitivity in a com-
plex network in terms of the completeness ratiosfL. Al-
though it is hard to establish a critical limit where networks
can be said to be transitive or not, the degree of transitivity
implied by the connections in a given complex network can
be at least partially quantified in terms of the completeness
ratios fL. This follows directly from the definition of this
measurement as the ratio between the number of edges in the
L–conditionally expanded network, which corresponds to the
number of edges belonging to transitive cycles of lengthL
+1, and the number of edges in the original network. The
completeness ratiosf2 and f3 obtained for the word associa-
tion experiment clearly indicate a high degree of transitivity
for L=2 and 3, with over 50% of the edges obtained by 2–
and 3–conditional expansions belonging to respective cycles.

Because of the high level of connectivity underlying the
word association data, attempts to isolate communities by
using 2– and 3–conditional expansions led to a single domi-
nant community and several rather small clusters. However,
by thresholding the original weight matrix atT=2 instead of
T=1—i.e., by makingB=dT=2sWd—a number of interesting
communities were obtained by applying the 3–conditional
expansion over the matrixA=dT=1sB+B8d. Table I shows
some of the so obtained communities, which are character-
ized by the fact that the respective constituent words tend to
form 4-cycles such aswater ° drink ° soda ° cold °
water, therefore leading to longer-range correlations. The
2–conditional expansion ofA led to just two communities of
three words each.

VI. CONCLUDING REMARKS

By introducing and characterizing the concepts of
L–conditional expansions and by showing that successive
L-percolations can be associated to a complex network, the
current paper has opened a series of possibilities for further
investigations, including not only the consideration of higher
values ofL and other evolution models, but also the use of
the introduced concepts as a means to identify communities
in the original network. As illustrated for the word associa-
tion experiment discussed in this work, the introduced meth-
odology also presents a good potential for characterizing real
phenomena.
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1 Water, drink, cold, soda, ice

2 Round, hole, circle, square, table

3 Animal, pig, cat, tail

4 Mary, John, man, woman

5 Much, good, better, work

LUCIANO da FONTOURA COSTA PHYSICAL REVIEW E70, 056106(2004)

056106-8


