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Given a complex network, its-paths correspond to sequenced afl distinct nodes connected through
distinct edges. Thé—conditional expansion of a complex network can be obtained by connecting all its pairs
of nodes which are linked through at least dngath, and the respective conditionalexpansion of the
original network is defined as the intersection between the original network ahekipansion. Such expan-
sions are verified to act as filters enhancing the network connectivity, consequently contributing to the identi-
fication of communities in small-world models. It is shown in this papeiLfe? and 3, in both analytical and
experimental fashions, that an evolving complex network with a fixed number of nodes undergoes successive
phase transitions—the so-calleepercolations, giving rise to Eulerian giant clusters. It is also shown that the
critical values of such percolations are a function of the network size and that the network percolates for

=3 beforeL=2.
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|. INTRODUCTION ment. Such a restriction therefore allows a clearer character-

: ization of the distribution of path lengths and connectivity in
One of the most remarkable properties of complex net- complex network
wqus is their tend_ency to undergo a topolog|ca_l pha_se tran- The specific demands governing the network growth may
sition (i.e., percolationas the number of connections is pro- imply that cycles such as that in Fig(t} occur sooner or

gressively increased1-3|. Several systems, such as the|gter along the network evolution. For instance, intense indi-
World Wide Web and epidemics dissemination, only becomeect (i.e., through node )Linformation exchange between
particularly interesting near or after percolation. Althoughnodes 2 and 3 is likely to foster the appearance of a direct
some works have investigated phase transitions in dynamicghk between those two nod¢$]. In other words, the forma-
systems underlain by complex netwoxesg.,[4,9]), here we  tjon of such cycles can be understood agiaforcement of
focus our attention otopologicalcritical phenomena in such  the connectivity between the involved nqdesssibly im-
networks. In addition to the classical studies by &@nd plied by intensive information interchange and/or node affin-
Rényi, more recent works addressing percolation in networkgy. Therefore, the density of 3-cycléas well as cycles simi-
include the analysis of the stability of shortest paths in comiarly defined for other values of) is likely to provide
plex networks[6], the investigation of percolation in auto- interesting insights into the growth dynamics and connectiv-
catalytic networkg7], and the study of the fractal character- jty properties of complex networks. This is one of the main
ization of complex network§8]. motivations for the investigations reported in the present ar-
The concept of L-percolations is based on the ticle, with implications to the identification of communities
L-expansions and.—conditional expansions of a complex in the analyzed networks, as described below. Another im-
network, which are introduced in the current paper. Consideportant aspect intrinsic to the definition @fpaths is that
the two subsequent edges in Figa)l The fact that node 2is  such a property is directly related to thnsitivity of con-
indirectly connected to node 3 through a self-avoiding 2-pattections along the network. In other words, if nodeis
passing through node 1 definesigtual link between nodes connected to nodi, which is connected to node, and so
2 and 3[9], represented by the dotted line in that figure. Inon, untili,, the eventual presence of the therefore established
case such a virtual edge does belong to the network, it desirtual link extending fromi; to i, can be understood as an
fines a cycle of length 3 between the three involved nodes, gadication of transitivity in the network connectivity.
illustrated in Fig. 1b), which contains three distinct undi- |t ijs worth observing that a 3-cycle can also be related to

rected 2-paths. The “self-avoiding” requirement for the pathsy hyperedgenetween the three involved nodes, as illustrated
is imposed in order to avoid passing twice through the same

edge, which would tend to produce an infinite humber of 3 3 3
paths between any pair of connected edges. For instance, i A T
the case this restriction is not considered, there would be ar
infinite number of even-length patlise.,L=3, 5, 7,..) from
node 1 to 2 in Fig. @a), while just the direct 1-path between 1 2 1 2
those nodes remains after imposing the self-avoiding require(@) (b)

FIG. 1. A pair of subsequent edges definingidual link be-
tween nodes 2 and 8&), the basic cycle of size 3 underlying
*FAX: +55 162 3373 9879. 2-percolationgb), and its relationship with the concept bfper-
Electronic address: luciano@if.sc.usp.br edge(c).
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in Fig. 1(c). Such a kind of edge is characteristic lofper- o
graphs[10-13, whose nodes are connected through hyper:
edges. In other words, a hyperedge is a relationship define
at the same time between more than two nodes. The essent
difference between the 3-cycle shown in Figb)land the
hyperedge irc) is the fact that the 3-cycle can be dismantled
by removing any of the involved edges while the hyperedge
implies simultaneous deletion of all connectiding., a hy-
peredge is a single edge and can only be removed as (@
whole). In other words, a 3-hyperedge intrinsically implies a
3-cycle, but not the other way around. Still, situations where
the (L+1)-cycles are closely interdependent can be under
stood in terms of hyperedges.

Given a complex networkI’ with N nodes, its 1 4 @ °
L-expansion is henceforth defined as the new network, als
with N nodes, which is obtained by incorporating an edge
between two nodes and j whenever there exists a virtual ° o @
link of length L (i.e., a self-avoiding path of length) be-  (¢) (d)
tween those two nodes. Observe that such a definition holc

for both directed and undirected graphs. Such expansions ci e'o

be implemented by considering or not multiple links betweer
two nodes, leading to different results. Theaxpansion of a

network can be intersected by the original netwbBrik order o @
to obtain theL—conditional expansion of that network. Such

a network, which also involvell nodes, contains all cycles

of lengthL+1 in the original network and no node with null

or unit degree. Actually, all connections in such a network ) ° °

belong to cycles of length+1. In the casé =2, the respec-

tive L—conditional expansion is composed exclusively of FIG. 2. A simple grapha) and its respective 2tb) and 3-(c)
3-cycles and can therefore be related to a respectivexpansions. The respective 2— and 3-conditional expansions are
3-hypergraph contained in the original network. Figure 2 il-shown in(d) and (e). The completeness ratios afg=0.43 andf;
lustrates a simple undirected gra@h and its respective 2- =0-86.

(b) and 3-(c) expansions. The 2— and 3—conditional expan-yq : s
; S . gree—are not necessarily preserved by conditional expan-
sions of the graph in Fig.(d) are shown ind) and(e). sions. For instance, although the hub markedh as Fig. 3

Figure 3 shows a simple netwoxk) and its respective a5 retained, the one marked hswvas eliminated by the
2-conditional expansion, which involves only 3-cycles. Ob-3_ .o jitional expansion.

serve that the conditional percolation removes all the edges 1o progressive addition of new edges into a random net-

not involved in 3-cycles, so that the obtained clusters repreg, inevitably leads to the appearance ofjiant cluster

sent a strong backbone of the original network. Observe thafich dominates the network henceforth. Such a phenom-

any single edge can be removed from the conditionally ®Xanon, corresponding to a topological phase transitia,

panded network without produglng a new cll_1§ter, which ISpercolatior) [14] of the network, has motivated much inter-
tr.ue for anyL =2. At the same t'mez the conq[tlonal EXpan- ast and bridged the gap between graph theory and statistical
sion tends to enhance the clustering coefficigijtof the e chanics, As shown in this article in both analytical and
obtained network. For the specific cdse2, the conditional oy herimental fashions, the uniform evolution of a random
expansion also tends to enhance thgularity of the net- network (and also of a preferential-attachment modwitu-
work, in the sense that all nodes in the resulting network )y jeads not only to the traditional percolation, but also to

have dg'g.ree Fqual to an integerbmulr:iple r<1)f 2]; Kind uccessivel-percolations, which are characterized by the
Conditional expansions can be thought of as a kind Ok,ot that a giant cluster appears in the respective
network filter which removes edges in order to preserv%u

h ¢ nod d I d th —conditional expansions. For instance, as the number of
t oseh grorL]Jps fo noh es moré dense yd conne(;teh t romij_ ges is progressively increased, one reaches a point where a
L-paths, therefore characterizing a tendency of the condigiant cluster is established in the original network where
tional expansion to preserve the subgraphs contained i

I Id model his kes th ditional ach of its nodes is connected to at least another node not
small-world modelg1,13. This fact makes the conditiona only through a direct connection, but also through a self-

expansions an interesting mechanism for identifying COMMUz\giding path of length.. This is themain propertycharac-

ni:]i.esh in suc,}.h a kilnd. of cpmplzx. ner:works, a possibility yei7ing the giant clusters for genetiepercolations. For in-
which is preliminarly investigated in the current wo€e  gance in the case=2, the giant cluster is characterized by

Sec. lll. Observe that the hubs—i.e., nodes with a highye fact that each of its edges is part of a 3-cycle. In other
words, every edge of the giant cluster can be associated with
A network is regular iff all its nodes have the same degree.  a 3-hyperedge, thus emphasizing the fact that the connec-
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(such as transitivity as illustrated in the last section of this
article. Taken in combination with traditional features such
as the average node degide-3], such measurements allow

a more complete characterization of the connectivity features
of the network under analysis.

Community finding: The clusters obtained by the
L—conditional expansions are characterized by enhanced
average clustering coefficient while presenting a tendency to
remove links between loosely connected groups of nodes,
suggesting the division of the original network into meaning-
ful communities (e.g., [15,14). In other words, the
L—conditional expansions of a network may help the identi-
fication of the involved communities, as only the more in-
tensely connected nodés., those characterized hypathg
will remain after the conditional expansion. This possibility
is preliminarly illustrated in Sec. Il of this article.

Eulerian networksin case the conditional expansions are
performed allowing for multiple links between two nodes, it
is shown in this paper that the giant clusters underlying the
L-percolations, and therefore contained in the original net-
work, are necessarily Euleridrin other words, all nodes of
the giant cluster defined by dnpercolation can be visited
without passing twice over the same edge. Such a property
has interesting implications for several types of complex net-
works, including communication networks and protein se-

FIG. 3. A simple network(@ and its 2—conditional expansion guence networkge.g., [17]), as well as for random walk
represented in terms of cycles/hyperedges. investigationg 18].

tions of such a 2—giant cluster are stronger than the tradi-
tional case(i.e., L=1). The hypergraph in Fig. 3 provides a
simplified illustration of the connections characterizing the
giant cluster in a 2-percolated complex network. It should be et the nodes of the network of interdstoe represented
noticed that the giant cluster obtained in Bnconditional ask=1,... N and the edges as ordered pdirg). The total
expansion has the unique characteristic that it cannot bgumber of edges in the network is expressechd®d. For
modified by a subsequent conditional expansion for the samgenerality’s sake, the netwoik can be fully represented by

II. DEFINITIONS

valuel, a property calleddempotency _ ~its weight matrixW, where no self-connections are allowed.
The concept ot -percolations allows a series of insights The weight matrix is obtained by assigning the weight of
about the analyzed networks, |nC|Ud|ng the fOIIOWIng. each edge(|,J) to the respective We|ght matrix element

Theoretical featuresAs one of the main interests in y(j i). Such a representation of the network in terms of a
complex networks is related to the occurrence of criticalyeight matrix is more general than the traditional adjacency
topological transitions, the identification of further perco"”"matrix, as it allows the representation of the weights associ-
tions of a growing network represents an important fact byteq with the network edges. To any extent, the adjacency
itself, indicating that the abrupt changes of the networkmairix A of a graph can be obtained by making its elements
properties—namely, connectivity—is not restricted to a(j,i)=1 whenever there is an edgef any nonzero weight
1-connectivity, but extends over several valued.offhere-  powvaen nodes and j. The average node degree bBfis
fore, the dynamics of network connectivity formation is veri- hanceforth represented asLet &;(x) be the operator acting
fied to be richer than usually considered in complex newvorkelementwise over the matriin such a way that the value of
theory. _ 1 is assigned whenever the respective element lodis ab-

|dentification of th_e strongest connect|on"§he OCCUr  sojute value larger than or equal to the specified threshold
rence of arlL-percolation indicates a reinforcement betweeny_ ¢ instance 3,(X=(3,-2,0,-4,1)=(1,1,0,1,0. Thus,
most of the connections in a network as farLgpaths ar - the adjacency matrix can be obtained from the weight matrix
concerned. In other words, the fact that a giant cluster IS A= S5 (W)
obtained for a specific value af indicates that most of the '
network nodes are connected through closegaths(i.e.,
most belong to cyclgs therefore exhibiting enhanced con-
nectivity for that value, in the sense that several links may b
removed before the percolated cluster collapses.

Network characterizationSeveral measurements related 2A connected graph iEulerianif it contains a closed trail includ-
to the concept of -connectivity can be defined and used toing all edges—i.e., &ulerian trail. A trail is a sequence of distinct
characterize the connectivity properties of complex network®dges connecting not necessarily distinct nodes.

The random and preferential-attachment models were ob-
tained as described in the following. For the random network
sase, the growing parameter corresponds to the Poisson rate
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(the mean density of connectigns and, in the preferential-
attachment case, to the numlmeof existing connections in
the current stage of growth, which are normalized in terms of
the respective average node degreeasp(N-1) and zg¢
=2c/N, respectively, for the sake of direct comparison be-
tween the two network types. The preferential-attachment
network growth was performed by keeping a list where each
network node with current degrdeappearsk times, so that
subsequent edges can be defined by selecting pairs of distin
elements in such a list according to the uniform distri-
bution [19].

One can check for ab-path between two nodésandj by
checking the sequences of successors for each transitio
along the graph, until either a path is found or all the paths
have been teste@the so-calleddepth-firstscanning of the
graph from node). Only successor nodes not already in-
cluded in the constructing path are considered during this(b)
procedure. Observe that, in the particular casé o2, the
respective paths can be immediately obtained from the FiG. 4. A simple network obtained after 2—conditional expan-

squared adjacency matrix ignoring its main diagonal. sion (a) and the duplication of its shared edges in order to warrant
The L-expansions andL—conditional expansions are the Eulerian propertyb).

henceforth represented & and =, respectively. Interest-

ing information about the intrinsic topology of the original shows the network obtained by performing the 2—conditional
networkI" can be obtained from their measurements of theéxpansion over the network in Fig(t§. Although missing
respective expansions. Some simple possibilities are thgome of the original connections, the three clusters obtained
number of edges in each of these graphs, henceforth exy the conditional expansion correspond to the original com-
pressed asi(Y\) andn(=,). Thus, fi=n(Z)/n(I)—hence  munities. The connections inside each obtained community
the completeness ratiof the networkl” for L—corresponds can be partially complemented by incorporating those edges
to the ratio between the number of edges belongingLto in Fig. 5b) which connect nodes inside each of the identified
+1)-cycles and the total number of edges in the original netclusters. This type of link is henceforth called itracom-
work I". For instance, in the case all edged’imre part of a munityedge, while links between nodes in different commu-
3-cycle, we havd,=1, while smaller values are obtained for nities are calledintercommunityedges. The effect of this
less transitive networks. procedure is illustrated in Fig. 6 with respect to the three
An interesting property of the giant clusters defined by thecommunities identified in Fig. (6). Although a total of 19
L-percolations when multiple links are allowed is the factedges were recovered, the disconnected node at the upper left
that they are necessarily Eulerian. More specifically, sucltorner of the network remained isolated from its original
multiple edges are implemented as follows: given thecommunity.
2—conditional expansion of the original network, duplicate We have verified through experimental simulations that,
each edge which is shared by two cycles, as illustrated ifior a relatively small number of added edgéwoisson rate
Fig. 4. This interesting property can be easily proved byabout 0.015 for networks such as that in Fig. 5, the original
considering that all nodes in such a network will have evercommunities can be reasonably estimated by applying the
degree, which is a necessary and sufficient condition for the—conditional expansion. Situations where some intercom-

a

cluster to be Euleriafl2]. munity edges are left by such expansions can be addressed
by using the Newman-Girvan method after the respective
Il CONDITIONAL EXPANSIONS AND COMMUNITY 2—cond|t!onal expansion. However, situations involving a
FINDING substantial number of random intercommunity edges, as

when the intercommunity and intracommunity edges are es-
This section reports a preliminary investigatation of thetablished with similar probabilities, are likely to produce in-

potential ofL—conditional expansions as a subsidy for com-correct communities.
munity finding. We already observed in Sec. | of this article
that such expansions tend to preserve the more strongly con- IV. L-PERCOLATIONS
nected subnetworks or communities. Figui@) Shows an The L-percolations of random networks have been inves-
initial network containing 3 communities of 20 nodes, eachtigated from both the analytical and experimental points of
corresponding to a random network whose edges were add&gew, as described in the following. Preferential-attachment
according to uniform probability with Poisson rate 0.3. By networks were also considered, but only experimentally.
adding random edges between these 3 groups, small-world
networks such as that shown in Figbbcan be obtained. A. Analytic mean-field calculations
The potential of theL—conditional expansions for isolating  The following mean-field approximation assumes that the
the original communities is illustrated in Fig(d), which  edge assignment takes place independently of the node de-
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FIG. 5. lllustration of how the
conditional expansion of a net-
work can act as a filter enhancing
the communities in small-world
types of networks:(a) original
network containing three commu-
nities, (b) network obtained by ad-
dition of random connections be-
tween communities, and(c)
partial identification of the three
original communities obtained by
2—conditional expansion of the
network in(b).

gree or other network features, being more accurate for natumber of expected edges Is=pn; and that the average

extremely dense networksee below. Let I' be a random
network withN nodes and Poisson rape(defining the over-
all edge density implying the maximum number of edges to
be n;=N(N-1)/2. It immediately follows that the average

node degree therefore iB=2n/N=p(N-1). We adopt a
mean-field approach considering each noddés the ex-
pected number of nodes connected i® z, we have that the
maximum number of 2-paths involving the eddks); (i,p)
established between any two nodesand p connected to
nodei is z(z-1)/2, so that the expected number of direct
connections between them pz(z-1)/2 and the expected
total number of 2-paths is,=Npzz-1)/2, implying the re-
spective 2—conditional expansion of the original graph to
have Poisson ratp, as given by Eq(l). Now, since the
2—conditional expansion df is also a random networlte-
call that the edge assignment takes place independently of
node degree or other current network propgriye obtain
the critical pointp5 where the respective percolation takes
place by considering that the node degree of the
2—conditional expansion—namely;(2-ce)—reaches unit
value at that critical transitiofsee Eq(2)]. Interestingly, this
critical point is verified to grow as a power bf The respec-
tive average degree of the original network at this critical
point can be estimated as in E®).

Next we address the cake3 by considering each edge
connecting two nodesand| of average degree The total

FIG. 6. Complemented communities obtained by incorporatingof direct connections between the distinct nodeand p

edges from the network in Fig(1® into the three respective clus-
ters in Fig. %c).

connected respectively tb and j, defining 3-paths(k,i);
(i,)); (j,p) between nodek andp, therefore is given az,
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FIG. 7. The giant cluster sizes for the random and preferential-attachment networks and respective conditional expansions in terms of
for N=25, 100, and 225 and=1 (<), L=2 (+), andL=3 (X).

and the expected number of such directed links per edge B. Simulation results

therefore is(p2)2. The total number of direct links between  The experimental analysis was performed by monitoring
the pairs of nodes connected through 3-paths passing throughe normalized maximum cluster sik&(z) for each instance
edgee therefore isn;=n(p2?=Np*(N-1)%/2, implying re-  of the growing networks for a total of 300 realizations of
spective Poisson rates as in Ed). Observe that, in the case each configuration. Figure 7 shows the maximum cluster
the connections become too dense, the number of closesizes obtained for random and preferential-attachment net-
paths such akk,i); (i,j); (j,k), instead of the assumed open works for N=Db? where b=3,4,...,15. Thepreferential-
paths(k,i); (i.j); (j,p), may become too frequent and under- attachment cases were generally characterized by smoother
mine the above estimations far=3. As the 3—conditional transitions than their random counterparts. As expected, the
expansion of the original random network is also assumed t§~ @nd 3—conditional expansions percolated later than the

be a random network, the associated critical rate value Caﬂriginal ne_twork(L:l), with thg 3-conditional expansions
now be calculated as in E¢5). The corresponding average of the original network percolating sooner and more abruptly

degree of the original network at this critical point is given than the respective 2—conditional expansions. Larger disper-

by Eq.(6). Interestingly, it follows thapS< pS for anyN> 1 sions were observed for the maximum cluster sizes of the
ie tﬁe .3—conditionaly expansion isgexp%acted to per(;olatéandom networks, indicating that their specific realizations

sooner than the 2—conditional expansion. We also have th&e less uniform. As theoretically predicted, the critical aver-
f,=pAN-1), fa=p3(N-1)2 andf3/f2:p3/p.222' age node degrer resulted in a function of network si2¢in

both the random and preferential-attachment models, but
N 4 such a dependency was markedly less intense for the
P2= n_T =p*(N-1), 1) preferential-attachment model. The dilogarithm diagram in
Fig. 8 shows the theoretical predictioisolid and dashed
n lines) and the values corresponding to 80% of the critical
Z2-ce=2-=2=10 p5=(N-1)"23 (2) average node degrees. More specifically, the vertical axis
N represents the logarithm of the critical average node degree
corresponding to 80% of the value pfor which the maxi-
Z(orig) = p5(N-1) = (N - 1)*/3, (3 mum dispersion oM(2) (the vertical bars in Fig. )7is ob-
served in the respective simulation. Observe that a total of 13
Ny, 5 simulation sets(executed for 200 realizations considering
Ps= P P(N- 1), (4) each specific values o, as identified in thex axis of Fig.
8), and not only the three cases illustrated in the first row of
N Fig. 7, were considered in order to obtain the results shown
Z(3-ce = ZN =10 pS=(N-1)"%4 (5) in Fig. 8. A good agreement between analytic and experi-
mental results is verified for both=2 and 3.
] The completeness ratios for the random and preferential-
Z(orig) = p§(N = 1) = (N- )*%, (6)  attachment have also been estimated in our simulations, and
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5.1 1n(ze) or 4-cycles than those in random networks, as expressed in
1.0 Fig. 9.
1.7

1.5
1.3
1.11
0.9
0.74

V. APPLICATION TO REAL DATA

In order to illustrate the potential of the concepts and
measurements suggested above, they have been applied to
In(N) experimental data regarding concept associations obtained in
the psychophysical experiment describeddh where a hu-
man subject is requested to associate words. After 1930 word
FIG. 8. Dilogarithm presentation of analytical predictiqsslid ~ associations were obtained, a weighted directed gaplas
line, L=4; dashed linel.=3) and experimental valugs<, L=2; *, determined by representing each of the 250 words as nodes
L=3) of critical average node degrees in terms\of and the number of specific associations between two words
as the weight of the edge between the respective nodes. The
the results foN=25, 100, and 225 are shown in Fig. 9. It is respective average node seemed to follow a power law. Here
clear from this figure that, as expected, higher completenes¥€ consider the adjacency mati 5r-1(B+B’), whereB
ratios were always obtained for the 3—conditional expansions &r=1(W), B’ is the transpose oB, and W is the weight
than for the 2—conditional expansions, substantiating the faghatrix obtained in the concept association experiment. In
that 3—conditional expansions tend to produce networks witlother words, the original weight matrix is thresholdedTat
more edges than those obtained for 2—conditional exparF1 and made symmetric in order to transform the original
sions. At the same time, the preferential-attachment modeldigraph into a graph. MatriB was characterized by=738
were characterized by completeness ratios which grow faste&dges,p=0.011, andz=5.9. The 2— and 3—conditional ex-
with z than for the random model, indicating that this type of pansions ofA were obtained as described above, leading to
complex network tends to produce a higher number of edges,=407 and n;=606 connections,p,=0.0067 and p;
belonging to 3- and 4-cycles. Such a result is compatible=0.0092, with respective average node degrees of 4.5 and
with the fact that random networks tend to percolate fasteb.7. Thus, we havé,=0.55 andf;=0.82, indicating, as ex-
than the preferential-attachment model because the conpected, a higher density of 4- than 3-cycles in the original
pleteness ratio only takes into account the number of existingetwork. Such high densities also imply that about half of the
edges in the original network. For instance, a network conedges in the original network belong to 3-cycles, while over
taining 10 isolated 3-cycles will havig=1 while a network  80% of the edges belong to 4-cycles. As a matter of fact, the
with a single cycle containing 30 nodes will implg=0.  fact that these values exceed the respective critical vajues
Therefore, while the size of the dominant cluster tends tdor N=250(see Fig. 8 strongly suggests that the word asso-
grow slower in preferential-attachment networks, the clustersiation network has already undergone percolation as well as
in such cases have a higher number of edges belonging to 3- and 3-percolations. Such results indicate that the word

—
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FIG. 9. The completeness ratios for the random and preferential-attachment models in terrfe &§=25, 100, and 225 and
=2 (+) andL=3 (X).
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association network is underlain by 3- and 4-cycles formed TABLE I. Some of the communities identified by 3—conditional
as a consequence of transitive nature of word associationsexpansions applied to the word association experiment. Observe
An interesting question implied by the above results rethat such communities are characterized by the tendency of the
gards the quantification of the degree of transitivity in a com-espective words to form 4-cycles suchwaater — drink — soda
plex network in terms of the completeness ratifps Al- — cold — water.
though it is hard to establish a critical limit where networks
can be said to be transitive or not, the degree of transitivity
implied by the connections in a given complex network can
be at least partially quantified in terms of the completeness
ratios f,. This follows directly from the definition of this
measurement as the ratio between the number of edges in the
L—conditionally expanded network, which corresponds to the
number of edges belonging to transitive cycles of lerigth
+1, and the number of edges in the original network. The
completeness ratiols and f; obtained for the word associa- VI. CONCLUDING REMARKS
tion experiment clearly indicate a high degree of transitivity
for L=2 and 3, with over 50% of the edges obtained by 2—
and 3—conditional expansions belonging to respective cycle{.
Because of the high level of connectivity underlying the

Water, drink, cold, soda, ice
Round, hole, circle, square, table
Animal, pig, cat, tail
Mary, John, man, woman
Much, good, better, work

g b W NP

By introducing and characterizing the concepts of
—conditional expansions and by showing that successive
-percolations can be associated to a complex network, the

word association data, attempts to isolate communities b urrent paper has op_ened a sefies of pogsibilit?es for further
using 2— and 3—conditional expansions led to a single dominvestigations, including not.only the consideration of higher
nant community and several rather small clusters. Howeve%ﬁlu.e? O;L arljd other e;volutlon modelts, %Ut ‘?ISO the use't(')f
by thresholding the original weight matrix @t2 instead of e introduced concepts as a means to identify communities

T=1—i.e., by makingd=é_,(W)—a number of interesting " the original network. As illustrated for the word associa-

communities were obtained by applying the 3—conditiona|t'on experiment discussed in this work, the introduced meth-

expansion over the matriA=s_,(B+B'). Table | shows ogology also presents a good potential for characterizing real
. " . enomena.

some of the so obtained communities, which are characteP
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